Osteopontin modulates myocardial hypertrophy in response to chronic pressure overload in mice.
نویسندگان
چکیده
Osteopontin (OPN) expression increases in the heart during hypertrophy and heart failure. Here, we studied the role of OPN in pressure overload-induced hypertrophy and analyzed the signaling pathways involved in hypertrophy. Aortic banding (AB) was performed in a group of wild-type (WT) and OPN knockout (KO) mice to induce pressure overload. Left ventricular (LV) structural and functional remodeling was studied 1 month after AB. AB increased OPN and beta1 integrin (a receptor for OPN) protein expression in WT-AB group. Hypertrophic response as measured by increased heart weight-to-body weight ratio and myocyte cross-sectional area was significantly increased in WT-AB and KO-AB groups when compared with their respective shams. However, the increase was significantly higher in WT-AB. Re-expression of atrial natriuretic factor was only detected in WT-AB group. LV end-diastolic pressure-volume curve obtained using Langendorff perfusion analysis exhibited a leftward shift in WT-AB group, not in KO-AB. LV-developed pressures measured over a range of LV volumes were significantly increased in WT-AB, not in KO-AB mice. Increased phosphorylation of c-Jun N-terminal kinases, p38 kinase, Akt, and glycogen synthase kinase-3beta was significantly higher in WT-AB when compared with KO-AB group. Increased OPN expression may play an essential role in modulating compensatory cardiac hypertrophy in response to chronic pressure overload.
منابع مشابه
Pressure overload-induced myocardial hypertrophy in mice does not require gp91phox.
BACKGROUND Reactive oxygen species (ROS) may mediate pressure overload-induced myocardial hypertrophy. NADPH oxidase may be involved in this process, because its expression and activity are upregulated by pressure overload and because myocardial hypertrophy caused by a subpressor infusion of angiotensin is attenuated in mice deficient in the gp91phox catalytic subunit of NADPH oxidase. METHOD...
متن کاملPressure Overload–Induced Myocardial Hypertrophy in Mice Does Not Require gp91
Background—Reactive oxygen species (ROS) may mediate pressure overload–induced myocardial hypertrophy. NADPH oxidase may be involved in this process, because its expression and activity are upregulated by pressure overload and because myocardial hypertrophy caused by a subpressor infusion of angiotensin is attenuated in mice deficient in the gp91 catalytic subunit of NADPH oxidase. Methods and ...
متن کامل1, 25 Dihydroxyvitamin D3 Protects the Heart Against Pressure Overload-induced Hypertrophy without Affecting SIRT1 mRNA Level
Background and Aims: There has been scant information concerning antihypertrophic effects of vitamin D specifically on its cellular and molecular mechanisms. Sirtuin 1 (SIRT1) is regarded as a key deacetylase enzyme in cardiomyocytes which applies potential cardioprotective effects by functional regulation of different proteins. This study aimed to evaluate the effects of 1, 25-dihydroxyvitamin...
متن کاملInducible nitric oxide synthase deficiency protects the heart from systolic overload-induced ventricular hypertrophy and congestive heart failure.
Inducible nitric oxide synthase (iNOS) protein is expressed in cardiac myocytes of patients and experimental animals with congestive heart failure (CHF). Here we show that iNOS expression plays a role in pressure overload-induced myocardial chamber dilation and hypertrophy. In wild-type mice, chronic transverse aortic constriction (TAC) resulted in myocardial iNOS expression, cardiac hypertroph...
متن کاملPressure overload leads to an increased accumulation and activity of mast cells in the right ventricle
Right ventricular (RV) remodeling represents a complex set of functional and structural adaptations in response to chronic pressure or volume overload due to various inborn defects or acquired diseases and is an important determinant of patient outcome. However, the underlying molecular mechanisms remain elusive. We investigated the time course of structural and functional changes in the RV in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Hypertension
دوره 44 6 شماره
صفحات -
تاریخ انتشار 2004